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ABSTRACT: The large strain behavior of a glassy polymer was studied in terms of com-
pression tests at various rates, while the local deformation was evaluated with a noncon-
tact laser extensometer. The main features of yield and postyielding were described with a
constitutive model from nonlinear viscoelasticity, combined with a kinematic formulation
for the separation of total deformation into a viscoelastic and a plastic part, respectively.
The concept of plastic shear transformations introduced elsewhere was used to develop a
mathematical model for the rate of plastic deformation. The entire experimental true
stress—strain curves (including strain hardening and strain softening) could, through this
model, be identified in a self-consistent manner. © 2001 John Wiley & Sons, Inc. J Appl

Polym Sci 79: 2534-2542, 2001

INTRODUCTION

The plastic deformation behavior of glassy poly-
mers has been the subject of a variety of research
works, dealing mainly with the elastoviscoplastic
response at small strains and a strain-hardening
effect after yield.'~® Oleinik et al.” ! proposed an
interesting plastic deformation mechanism for
polymeric glasses. The whole process consists of
two main stages: nucleation and growth of special
shear defects, called plastic shear transforma-
tions (PSTs) and their disappearrance. The main
feature of plastic deformation of glasses is the
storage of large amounts of internal energy dur-
ing the deformation procedure.

This approach is based on various experimen-
tal data obtained by deformation calorimetric
studies, thermally stimulated creep, differential
scanning calorimetry, and residual strain recov-
ery tests. It has been found that the large amount
of energy stored in the material is related to es-
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sential structural rearrangements of the poly-
meric glassy state.’

In a recent work,'? the yield behavior of an
amorphous glassy polymer was studied with true
tensile stress—strain curves, obtained at various
crosshead speeds using a new experimental
method. A constitutive equation from nonlinear
viscoelasticity was used, with the further as-
sumption that the material, during deformation,
follows subsequently two distinct paths: a nonlin-
ear viscoelastic and a plastic one. The maximum
strain, where this distinction is manifested, was
treated as a control parameter, while the strain
rate was experimentally evaluated. The decompo-
sition of deformation was made with a suitable
kinematic formulation, proposed in the litera-
ture.'® The theoretical results describe in detail
the experimental curves.

In this work, the constitutive model that was
developed in ref. 12 was applied. This theory com-
bined with the concept of PSTs that are evolved in
a deformed glassy polymer has led to a physical
model that presents the mechanisms of plastic
deformation in glassy polymers qualitatively and
to a mathematical model for the evaluation of the



rate of plastic deformation. This model was
proved to be flexible enough to predict the exhib-
ited stress yield and stress drop, using only the
value of the macroscopic yield strain. Although
strain softening is apparent in most cases of plas-
tic deformation of glassy polymers, there has not
been established yet a correct model for yielding,
accounting for this effect in a self-consistent man-
ner.'* Strain softening is accompanied by a series
of effects such as small volume decreases,'® ex-
tended-chain conformations,'® and internal en-
ergy increment up to a constant value.’

The extracted expression of the rate of plastic
deformation and the associated parameters are of
determinant importance for the detailed descrip-
tion of yield and postyield behavior of the glassy
state. The glassy polymer selected for this treat-
ment was polycarbonate (Lexan) that exhibits all
the main features of yielding, that is, yield stress
rate dependence and strain softening. Combining
this model with the kinematic formulation intro-
duced by Rubin,'® all these features were accu-
rately described. The material was tested in
terms of compression experiments at three differ-
ent crosshead speeds. The experimental device
used for the deformation measurements is de-
scribed elsewhere'” and permits the evaluation of
the strain and strain rate of a localized region of
the entire gauge length.

EXPERIMENTAL

The material tested was polycarbonate, with the
commercial name Lexan, provided in plate form.
Cylindrical specimens with an average diameter
of 10 mm and height of 20 mm were constructed
for the compressive experiments. To eliminate
any prehistory effects, the samples were annealed
at a temperature above the T, for 1 h. The com-
pression experiments were carried out with an
Instron 1121 tester at room temperature. Three
different crosshead speeds were used, namely,
0.1, 1, and 10 mm/min, which coincide with a total
effective strain rate equal to 8.3 X 1072 8.3
X 1074 and 8.3 X 10 % s~ !, correspondingly. The
longitudinal strain could be measured, with the
laser extensometer, which permits a noncontact
measurement of the longitudinal deformation dis-
tribution of samples. This experimental method
was presented in detail in ref. 17.

For the deformation measurements a high-con-
trast tape pattern code was applied to the gauge
length of the sample, namely, four white stripes
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(three zones) on a dark background. The space
between the stripes was 2 mm.

During the compression tests, the load was
recorded simultaneously with the percentage
strain, and the data acquisition was made with a
software developed by the Gabo-Qualimeter Co. It
was possible to measure the deformation at every
zone separately, and the one with the maximum
strain (reference zone) could be detected. In Fig-
ure 1, the deformation in respect to real time is
plotted for the three zones, in the case of a cross-
head speed of 1 mm/min. The zone with the max-
imum deformation was the intermediate one (2—
3), far apart from the plates of the Instron tester.
Therefore, the friction effects were minimized,
and the response of the material in pure compres-
sion testing could be studied. As shown, the dis-
tribution of macroscopic strain along the gauge
length is not so inhomogeneous in respect to the
tensile tests, where necking instability occurs.!?
The construction of engineering and true stress—
strain curves (making an isovolume assumption)
was then made in respect to that reference zone,
and these plots are presented in Figures 2 and 3,
correspondingly. Stress drop is obvious from
these figures, even though the cross section is
increased during deformation.

Moreover, the experimental strain rate could
be recorded for every zone in respect to the stretch
ratio. The true experimental strain rate is plotted
for the three crosshead speeds in Figure 4, in
respect to the localized zone. As is observed, the
true strain rate of a small reference gauge length
becomes much higher (one order of magnitude)
than is the total effective imposed strain rate
(which are mentioned above) and is related to the
intrinsic response of the material. This effect will
be discussed later.

CONSTITUTIVE EQUATIONS FOR
UNIAXIAL STRESS

In a recent work,'? the large deformation behav-
ior of glassy polymers was described with a set of
constitutive equations that are obtained with an
analysis, based on the idea that there are two
distinct paths, followed by the material during
the deformation procedure. In the first stage, at
small strains, the viscoelastic path is dominant,
and the corresponding constitutive relations, ac-
cording to the nonlinear viscoelastic description
by Matsuoka,'® are expressed as the product of a
strain-dependent term with a time-dependent
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Figure 1 Local stretch ratio varying with time, for a crosshead speed of —1 mm/min.

one. This behavior is extended up to a critical
value of deformation, which acts as a control pa-
rameter of the whole behavior of the material. At
this point, a localized domain breakage takes
place inside the structure of the material, accord-

ing to Matsuoka’s treatment, revealing this way a
totally new behavior. Hereafter, the plastic path
prevails. Hence, Matsuoka used a constitutive
equation from linear viscoelasticity (derived from
a single Maxwell model) of the form
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Figure 2 Engineering compression stress
different crosshead speeds.

strain curves of polycarbonate at three
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Figure 3 Compressive true stress strain curves of polycarbonate at three different

crosshead speeds.
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where E, is the apparent elastic modulus; ¢, the
strain; and &, a characteristic feature of the ma-

terial, associated with the maximum yield stress.
As has been mentioned elsewhere,'® this value
represents the maximum elastic strain, is mate-
rial-dependent, and has a value for glassy poly-
mers lower than 10%. This quantity controls the

- LI [ v ' ' . . . [
- Crosshead Speed (mm/min)
i
< 1.75 it T
4] "0.,..
0
12] .°o.
1.5 o,
— s.
~ Y
: "~ 10
(o] —
—~ 1.25 —/ \.‘
x 4
1 \'"
A by
%
@ 0.75 L
iy
o
~
fe] 0.5
e
o
o
0 0.25% -1
0.7 0.75 0.8 0.85 0.9 0.95 1

Stretch Ratio ->
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crosshead speeds tested.
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initiation of plastic behavior or, equivalently, the
transition from viscoelastic to plastic behavior.

Afterward, for establishing a nonlinear depen-
dence of the viscoelastic stress from the strain
rate, Matsuoka introduced the following scaling
rule: A stress—strain curve at &, can be predicted
from an experimental stress—strain curve ob-
tained at &; by multiplying the stress and strain
in the experimental curve by the scaling factors
(€5/€1)" and (£5/8,)™ for the stress and strain,
respectively. The power coefficient m is typically
two-thirds of n.

Equation (1) modified with the above scaling
rule and combined by a set of expressions ob-
tained by a kinematic formulation that separates
the total deformation into plastic and elastic
parts, correspondingly, proposed by Rubin,'® was
used!” to describe the yield behavior of a glassy
polymer at various crosshead speeds in terms of
tensile experiments. This kinematic formulation
was presented in detail in ref. 17 for three-dimen-
sional problems. According to this treatment, the
viscoelastic deformation of each material point
was formulated through a triad of vectors m; that
are related to dilatation, distortion, and orienta-
tion of a mean elementary volume, in respect to
some reference state. To avoid the decomposition
of the deformation gradient tensor into elastic
and plastic parts, because these tensors lack an
explicit determination in the present configura-
tion of the material elements, Rubin specified an
evolution equation for the elastic deformation, in-
cluding the relaxation effect of plastic deforma-
tion, without introducing a plastic deformation
tensor explicitly. For uniaxial deformation, the
following expression for the time evolution of the
stretch ratio a¢,, = 1 + ¢ of the viscoelastic de-
formation was obtained:

1-2v (a}—1
i, 1+2(1+v)( @, )
am 1-2v (5a® -2
1+6(1+v)< a, )
a T,[(a)—-1 s
{a_18< ol )(4am+2)] (2)

where ¢ is the imposed strain rate; a, the stretch
ratio; and v, the Poisson ratio and ¢,,(0) = 1. It
must be mentioned that the stretch ratio a is
equal to 1 — ¢ in a compression test.

The quantity I', expresses the rate of plastic
deformation and will be specified in the following.

When yield initiates the stretch ratio, a,, is equal
tol — ¢, and 4,, is equal to zero. Then, the second
part of eq. (1) is equal to zero, and using the above
approximations,'®!” we obtain

_ a
T @)

where ¢ is the rate deformation of the reference
length.

MECHANISM OF RATE OF PLASTIC
DEFORMATION—RESULTS

The treatment, presented below follows a defor-
mation mechanism of glassy polymers introduced
by Oleinik et al.® Their approach is based mainly
on experimental data in terms of deformation cal-
orimetry, residual strain recovery rate tests, and
thermally stimulated creep. It was found that,
from the early stages of deformation, a large frac-
tion of the work offered in the material is con-
verted to internal energy, meaning that essential
structural rearrangements have occurred. Inelas-
tic strain and consequent steady-state plastic flow
proceed via nucleation, growth, and merging of
PSTs.

Formation of PSTs starts at the very beginning
of deformation, probably at specific localized sites
of high free volume or defect regions. A high
amount of energy is stored during the deforma-
tion procedure, around the PSTs. However, be-
cause shear strain associated with every PST is
small, high PST concentration is required for the
polymeric material to attain an appreciable mac-
roscopic strain. Moreover, contrary to the perfect
crystals, glassy polymers exhibit no structural
periodicity; therefore, the PSTs remain at its nu-
cleation site. Propagation of PSTs may occur only
by merging with the newly emerging neighboring
PST.* !

From this analysis, it is revealed that the ki-
netics of plastic deformation of glassy polymers is
controlled mainly by the PST nucleation rate and
its susceptibility to stress. Every PST is associ-
ated with a specific value of activation energy AE,
for its recovery after unloading. It was proposed®
that the distribution of those activation energies
is quite broad, and whenever AE, is high enough,
the PST transforms into a nonreversible state,
related to the plastic deformation. This transition
occurs when the imposed stress field is increased.



On the other hand, when a stress field is ap-
plied on a material having various types of de-
fects, the strain field induced follows a nonhomo-
geneous distribution, leading to the development
of regions with varying strain. In this case, where
nuclei of PSTs already exist, as above-mentioned,
it is reasonable to consider that this inhomoge-
neous strain field is developed around each PST.
The PSTs are of varying size and varying activa-
tion energy, following a continuous distribution
described by a certain probability density in re-
spect to their size as a random variable.

The basic assumption here is that an analo-
gous distribution density will be followed by the
strains evolved around the PSTs, through which
the appropriate amount of elastic energy is of-
fered for the PSTs transition to a nonrecoverable
state. It is reasonable to suppose that the size of
PSTs follows a normal distribution and, equiva-
lently, it may be assumed that the strain field ¢,
around them follows a normal distribution as
well.

Hence, the distribution density (normal distri-
bution) of the PSTs in respect to the strain ¢; as a
random variable is given by

1
) = [—(1/2)(ei—ws)?]
f(e) s \//% e 4)

where w is the mean value, and s, the standard
deviation of the strain field. The application of the
strain field with a rate ¢ activates the process of
nucleation, growth, and merging of the PSTs,
leading in some cases to an irreversible state, that
is, to plastic deformation. The fraction of the PSTs
that have enough activation energy to attain a
new nonreversible state is given by the probabil-
ity

P(0<g =¢)=F(e) — F(0) (5)

where F(e) expresses the distribution function.
Therefore, eq. (5) becomes

P(e)=F(e) — F(0) =

1 e ;
— | elews? g
s\2m

0

(6)

Making the further assumption that the rate of
plastic deformation I',, is analogous to the fraction
of PSTs that have achieved a nonreversible state
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and that this transition takes place with an aver-
age rate k for every PST, we have

I,=kP(0<g=¢) (7

The value of % can be estimated, assuming that at
the yield point, I', = Ly and at this stage of
deformation (¢ = ¢,), because the normal distri-
bution function is symmetric, P(e,) becomes
equal to %; therefore following eqs. (3) and (7), we

obtain

1 j— a
2% T o a(a,, —1) (8)
then
a 1 a
- e wr gy,
Ly a(a, —1) S\,/;J ¢ da; (9)
1

where the limits of integration were substituted
with the corresponding values of the stretch ratio
a instead of strain e. Parameter pu, which is the
mean value of the probability density, is the
stretch ratio a,,, where yield occurs and was
taken experimentyaly equal to 0.935. The standard
deviation s, which is the only fitting parameter,
was estimated to be equal to 0.033 in the calcu-
lation procedure that will be analyzed in the fol-
lowing. From eq. (9), the rate of plastic deforma-
tion I', can be evaluated and is presented in Fig-
ure 5. The shape of this plot is similar to the
shape of the experimental strain rate ¢ of Figure
4. In the initial stages of deformation, where elas-
tic strain is predominant, I', is lower than is &.
After yielding, I', becomes much higher due to the
factor d/[a(a,, — 1)]. It is important to mention
here that this fact is a result of the kinematics
applied, according to which yielding occurs when

&
Lo = per unit strain (10)

Combining eqs. (2) and (9) and incorporating
the experimental strain rate ¢, the value of the
stretch ratio a,, is evaluated at every stage of
deformation. This value in terms of deformation ¢
is used in the constitutive eq. (1) for the stress
evaluation. The integration of eq. (2) was made
numerically, using small time steps, with the soft-
ware “Mathematica.”’® By decreasing gradually
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Figure 5 Rate of plastic deformation I, as derived from eq. (8) for a crosshead speed

of —1 mm/min.

the original time step up to one-tenth, a high
convergence was obtained.

To describe the material response at various
crosshead speeds, the scaling rule by Matsuoka'®
was applied, where &, represents the imposed
strain rate of 10 mm/min and &, corresponds to
the speed of 0.1 mm/min. Both values of these
strain rates are taken to be constant, equal to the
average value of the imposed crosshead speed

reduced to the total specimen gauge length. Fol-
lowing this scaling law, the data of the interme-
diate speeds can also be extracted.

The calculation of the exponent n can be made
in terms of the slope of the variation of the yield
stress plotted logarithmically in respect to the
strain rate. Following Figure 6, where the exper-
imental yield stress is presented versus the strain
rate, exponent n has been found to be equal to

4.5
g 4.45

4.4
A
|
4.3
]
H
i
[
o 4.3
Q
q e

4.25 /./

-10 -8 -6 -4 -2 0
Logl[el -> (Sec”-1)

Figure 6 Yield stress versus strain rate plotted logarithmically at three different

strain rates examined.
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Figure 7 True compressive stress strain curves for polycarbonate. Thick lines: ex-
perimental results; thin lines: theoretical results.

0.026 and the exponent m equal to 0.017. The
theoretical results obtained are presented in re-
spect to the experimental data in Figure 7, where
a good approximation was testified for the entire
shape of the true stress—strain curves for all
crosshead speeds tested.

CONCLUSIONS

The theoretical model developed in this work
leads to the prediction of the entire yield behav-
ior, including yield stress and strain softening
exhibited by the material. More specifically, the
following summarized points support the intro-
duced analysis:

(a) The kinematic formulation applied has the
advantage, with respect to other plasticity
theories, to describe in detail the inhomo-
geneous deformation through the velocity
gradient tensor. This is because, for inho-
mogeneous deformation, the elastic and
plastic parts of the deformation gradient
tensor F are not integrable in the displace-
ment field, while tensor F is always inte-
grable. This formulation leads to the con-
clusion that yielding occurs when the rate

of plastic deformation I',, becomes equal to
the macroscopic strain rate reduced per
unit strain.

(b) The kinetics of plastic deformation of
glassy polymers is controlled mainly by the
nucleation of PSTs. The strain inhomoge-
neity developed around each PST, along
the reference length, follows a normal dis-
tribution with a mean value equal to the
measured yield strain and a standard devi-
ation that is selected to identify the exper-
imental evidence.

It was also extracted that, according to this anal-
ysis, the strain softening can be predicted in a
self-consistent manner, without introducing fur-
ther internal parameters.

Professor E. F. Oleinik is gratefully acknowledged by
the authors for the extended discussion he had with
them about his theory for PSTs.
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